Click to home Page

Grand Unified Theory
Wave theory
United nature theory
Theory of everything
Google
 

 

AN ATTEMPT  TO SOLVE TRIGO PROBLEM.

Details including whole numbers   a,  b,  c

                                                            S =2*p             p =2*q

                        Basic premise

                        Long unit C         c =1

                                    C > b > a         (a + b) > c

 

We have to prove that S (in  a^s + b^s = c^s) isn’t bigger than 2.

 

Proof:              a =/= b*                                                                       .1        

            A^2 + b^2 = 2*(b)^2 =c^2

 

            2^.2*b =c

 

Continuation                                                                                       .2

 

                                    According in “Co sinus’s  Theory”

            A^2 + b^2- 2*a*b*Cos© =c^2

            When© has a right angle we get

 

                                    A^2 + b^2 = c^2

 

`           and the   opposite

When  a^2 + b^2 =c^2

 

Then C is a right angle.

                                                                                                            3.

 

According to Sinus Theory

 

A/Sin(A) = b/Sin(B) =c/Sin(C)

 

When C is a right angle and c=1

We get

            A = Sin(A),   b =Sin(B),  c = Sin(C).

                                                                                                                                                                                                                                                .4

X^s=(X^p)^2

 

Y^s =(Y^p)^2

 

According to the trigonometry theory

When a triangle has a right angle

Sin^2(A)+Sin^2(B) = 1

 

A^2+b^2 =1

(a^p)^2  +  (b^p)^2   =1

(a^(2*q))^2 + (b^(2*q))^2 = 1

 

We get:

            s = 2,  p =1,  q = 0.5,  or:

 

An equal on one side  a^2,  b^2,  c^2.

And the ather side (a^p)^2,  (b^p)^2,  (c^p)^2.

            Of the same  function

 

 

Is a contradiction between the  two sides.

 

                        Have  been  proved.

 

                                                                                    Matus Caspi

      Yagur  30065

            Israel

e.m.matuscaspi@gmail.com